Crosslinked polymers Epoxy compounds Chemical Engineering
The interest in epoxy thermosetting polymers is widespread (e.g. Boeing 787 Dreamliner, windmill blades, automobiles, coatings, adhesives, etc.), and a demand still exists for improving toughness of these materials without degrading advantageous properties such as strength, modulus, and Tg. This study introduces novel approaches for improving the intrinsic mechanical characteristics of these polymers. The designed synthetic techniques focus on developing polymer materials with the same overall compositions but varying in network topologies, with distinct topological features in the size range of 5-50 nm, measured by SAXS and SEM. It was found that without altering chemical structure, the network topology of a dense thermoset can be engineered such that, under mechanical deformation, nano-cavities open and dissipate energy before rupturing covalent bonds, producing a tougher material without sacrificing strength, modulus, and even glass transition temperature. Modified structures also revealed higher resistance to fracture than the corresponding control structures. The major fracture mechanism responsible for the increased energy dissipation was found to be nano-cavitation. SEM images from the fracture surfaces showed clear cavities on the modified samples whereas none were seen on the fracture surface of the control samples. Overall, it was demonstrated that network topology can be used to tailor thermal and mechanical properties of thermosetting polymers. The experimental methodologies in this dissertation can directly and economically be applied to design polymeric materials with improved properties for desired applications. Although topology-based toughening was investigated on epoxy-amine polymers, the concept can be extended to most thermoset chemistries and perhaps to other brittle network forming materials.
Metrics
47 File views/ downloads
30 Record Views
Details
Title
Effect of Network Structure/Topology on Mechanical Properties of Crosslinked Polymers
Creators
Majid Sharifi - DU
Contributors
Giuseppe R. Palmese (Advisor) - Drexel University (1970-)
Awarding Institution
Drexel University
Degree Awarded
Doctor of Philosophy (Ph.D.)
Publisher
Drexel University; Philadelphia, Pennsylvania
Resource Type
Dissertation
Language
English
Academic Unit
Chemical and Biological Engineering; College of Engineering; Drexel University
Other Identifier
6386; 991014632327504721
Research Home Page
Browse by research and academic units
Learn about the ETD submission process at Drexel
Learn about the Libraries’ research data management services