Publications list
Journal article
Urban lichens as an emerging model for urban evolution
Published 12 Dec 2025
American journal of botany, 112, 12, e70140
Journal article
Urban pests traveled with ancient humans
Published 23 Oct 2025
Science (American Association for the Advancement of Science), 390, 6771, 335 - 336
Population genomics reveals the pre-urban origins of a common mosquito.
Journal article
Legacy effects of religion, politics and war on urban evolutionary biology
Published 02 Jul 2025
Nature Cities, 2, 7
Urbanization has been a defining feature of the past four centuries, with most of the global population now living in highly modified environments shared with wildlife. Traditionally, biological urban evolutionary research has focused on physical factors such as habitat fragmentation, pollution and resource availability, often overlooking the social and political forces shaping urban environments. This Review explores how religion, politics and war drive urban wildlife evolution by shaping environmental conditions and selective pressures. We synthesize existing knowledge on these influences and propose testable hypotheses to advance the field. Understanding these dynamics is essential for explaining the variability in urban evolutionary processes and predicting the future development of urban systems. By integrating social and political dimensions, we can gain deeper insights into how cities shape the evolution of organisms that inhabit them.
Journal article
Published 14 Feb 2025
PloS one, 20, 2, e0318956
Urbanization is hypothesized to isolate populations and restrict dispersal, leading to reduced genetic diversity and increased genetic differentiation. We tested this hypothesis in specialist herbivorous insects of milkweed, positing that higher dispersal ability would mitigate the negative effects of urbanization on genetic drift and gene flow, and that these effects would vary with city size. In this study, we collected 383 milkweed insects from urban and rural sites in Toronto, Canada, and five surrounding cities. Using ddRADseq, we generated 145,000 SPNs for monarchs, 10,000 SNPs for beetles, 6,000 SNPs for weevils to quantify genetic diversity, demographic history and population genetic structure. Contrary to our hypotheses, our results indicated no effect of urbanization or dispersal ability on diversity or genetic differentiation. Genetic diversity, measured as π, varied between 0.0013 and 0.0044 across species, with no urban vs. rural component, but with monarchs having >2 X higher diversity compared to beetles and weevils. Similarly, genetic differentiation was generally low, FST varying between 0.01 and 0.28, but there are no consistent trends among urban vs. rural samples for any of the three species. However, demographic analyses revealed a consistent decline in effective population size for all three sampled species, beginning around the last glacial maximum and intensifying over the past 1,000 years. Our findings suggest that both urbanization and dispersal ability have not been a major factor in reducing gene flow or increasing genetic drift among milkweed's herbivorous insect populations. Instead, historical events such as climatic change since the last glacial maximum, and large-scale anthropogenic disturbance in general, have had a more pronounced impact on demography. These results highlight the importance of considering the combined effects of natural and anthropogenic long-term historical processes when studying population genetics in the context of urbanization.
Journal article
The evolutionary history of wild and domestic brown rats (Rattus norvegicus)
Published 20 Sep 2024
Science (American Association for the Advancement of Science), 385, 6715, 1292 - 1297
The brown rat (Rattus norvegicus) occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains. Advances in zooarchaeology and population genomics will usher in a new golden age of research on the evolutionary biology of brown rats, with positive feedbacks on their use as biomedical models.The brown rat (Rattus norvegicus) occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains. Advances in zooarchaeology and population genomics will usher in a new golden age of research on the evolutionary biology of brown rats, with positive feedbacks on their use as biomedical models.
Journal article
Online toolkits for collaborative and inclusive global research in urban evolutionary ecology
Published Jun 2024
Ecology and evolution, 14, 6, e11633
Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging. Therefore, an online collaborative research hub, where common methods and best practices are shared among scientists from diverse geographic, ethnic, and career backgrounds would make research focused on urban evolutionary ecology more inclusive. Here, we describe a freely available online research hub for toolkits that facilitate global research in urban evolutionary ecology. We provide rationales and descriptions of toolkits for: (1) decolonizing urban evolutionary ecology; (2) identifying and fostering international collaborative partnerships; (3) common methods and freely‐available datasets for trait mapping across cities; (4) common methods and freely‐available datasets for cross‐city evolutionary ecology experiments; and (5) best practices and freely available resources for public outreach and communication of research findings in urban evolutionary ecology. We outline how the toolkits can be accessed, archived, and modified over time in order to sustain long‐term global research that will advance our understanding of urban evolutionary ecology.
Advancing urban evolutionary ecology will require a global perspective, yet many barriers currently prevent scholars from the global south and north from effectively collaborating. We developed toolkits that are flexible, reliable, and accessible on a website to facilitate effective collaborations across geographic boundaries in urban evolutionary ecology.
Journal article
Interactions between climate change and urbanization will shape the future of biodiversity
Published 01 May 2024
Nature climate change, 14, 5, 436 - 447
Climate change and urbanization are two of the most prominent global drivers of biodiversity and ecosystem change. Fully understanding, predicting and mitigating the biological impacts of climate change and urbanization are not possible in isolation, especially given their growing importance in shaping human society. Here we develop an integrated framework for understanding and predicting the joint effects of climate change and urbanization on ecology, evolution and their eco-evolutionary interactions. We review five examples of interactions and then present five hypotheses that offer opportunities for predicting biodiversity and its interaction with human social and cultural systems under future scenarios. We also discuss research opportunities and ways to design resilient landscapes that address both biological and societal concerns. In this Perspective, the authors develop an integrated framework to understand and predict the joint impacts of climate change and urbanization on biodiversity and ecosystems. They review examples of interacting impacts and present opportunities for future research.
Journal article
Effects of urban-induced mutations on ecology, evolution and health
Published 19 Apr 2024
Nature ecology & evolution
Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.
Journal article
Does urbanisation lead to parallel demographic shifts across the world in a cosmopolitan plant?
Published 01 Apr 2024
Molecular ecology, 33, 7, e17311
Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced N
linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.
Journal article
Universal DNA methylation age across mammalian tissues
Published 01 Sep 2023
Nature aging, 3, 9, 1144 - 1166
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.